Transfer of Inner Cell Mass Cells Derived from Bovine Nuclear Transfer Embryos into the Trophoblast of Bovine In Vitro–Produced Embryos

M. MURAKAMI,1 C.E. FERGUSON,1 O. PEREZ,1 A. BOEDIONO,1 D. PACCAMONTI,2 K.R. BONDIOLI,1 and R.A. GODKE1,2

ABSTRACT

Presence of placental tissues from more normal noncloned embryos could reduce the pregnancy failure of somatic cloning in cattle. In this study, inner cell mass (ICM) cells of in vitro–produced (IVP) embryos was replaced with those of nuclear transfer (NT) embryos to reconstruct bovine blastocysts with ICM and trophoblast cells from NT and IVP embryos, respectively. A total of 65 of these reconstructed embryos were nonsurgically transferred to 20 recipient beef females. Of those, two females were diagnosed pregnant by ultrasonography on day 30 of gestation. One pregnancy was lost at 60–90 days of gestation, and the other recipient cow remained pregnant at day 240 of gestation; however, this female died on day 252 of gestation. Gross pathology of the internal organs of the recipient female, a large fetus, and a large placental tissue mass suggested the massive size of the fetus and placental tissue were likely involved in terminating the life of the recipient female. Biopsy samples were harvested from the skin of the dead recipient cow, the fetus and from cotyledonary tissue. Microsatellite DNA analysis of these samples revealed that the genotype of the fetus was the same as that of the NT donor cells and different from that of the recipient cow. Correspondingly, neither the fetus nor recipient cow had the same genotype with that of the fetal cotyledonary tissue. These results present the first known documented case of a bovine somatic NT pregnancy with nonclone placental tissues after transfer of a blastocyst reconstructed by a microsurgical method to exchange of ICM cells and trophoblast tissue between NT and IVP blastocysts.

INTRODUCTION

An unusually high proportion of fetal or neonatal losses has been consistently documented in bovine cloning by somatic cell nuclear transfer (NT), which is the major impediment towards widespread application of this methodology. Among the contributing factors, placental deficiency of the NT conceptus has been associated with lowered cloning efficiency (Stice et al., 1996; Hill et al., 2000; De Sousa et al., 2001, Bertolini and Anderson, 2002).

In cattle, both structural and epigenetic anomalies have been detected in later stage somatic NT embryos, such as decreased trophectoderm cell to total embryonic cell ratio and trophectodermlocalized methylation aberrancy (Kang et al., 2002; Koo et al., 2002; Han et al., 2003). Research indi-
cates a higher frequency of these and other alterations in developing NT embryos compared with those of their in vitro-produced (IVP) or in vivo-derived counterparts (Patel et al., 2004; Ravelich et al., 2004a,b), and these alterations may contribute the subsequent placental dysfunction during latter stages of pregnancy.

Aberrant expression patterns of various genes are thought to be involved in placental dysfunction, such as a placental lactogen, leptin, insulin-like growth factor binding proteins 2 and 3 and trophoblast major histocompatibility complex 1 have been detected in bovine NT conceptuses in addition to a multitude of morphological anomalies, and the frequency was higher than that reported in fetuses derived from artificial insemination or IVP procedures (Hill et al., 2002; Patel et al., 2004; Ravelich et al., 2004a,b). Alterations in gene expression are likely the underlying cause of placental malformation and subsequent abnormal function during pregnancy (Hashizume et al., 2002; Ravelich et al., 2004a). The production of dysfunctional peptides and/or proteins could increase the frequency of pregnancy failure, since they likely play an important role in nutrient partitioning and regulation of placental development and fetal growth. It has been proposed that placental abnormalities are a major factor in the decreased survivability in cloned bovine near-term fetuses and perinatal calves (Stice et al., 1996; Wells et al., 1999; Hill et al., 2000).

Over the years, various research groups have developed procedures to isolate (mechanically or immunologically) and transfer the ICM from sheep and goat blastocysts to the blastocoele cavity of other intra- or inter-species embryos, producing viable sheep, goat, or chimeric offspring (Fehilly et al., 1984; Polzin et al., 1987; Butler et al., 1987; Roth et al., 1989; Rorie et al., 1994). Chimeric offspring have been produced by microinjection of bovine ICM cells into the blastocoele cavity of cattle blastocysts (Summers et al., 1983). To eliminate the production of ICM-derived chimeric reconstructed embryos, a method was developed to remove the host ICM from the trophoderm at the time the foreign ICM was injected into the blastocoele of the host embryo (Rorie et al., 1994).

To evaluate these NT conceptus inconsistencies, production of embryos with fetal and placental tissues of different origin would be invaluable in attempting to solve this major barrier to the field application of NT technology. It has been proposed that the production of cloned embryos surrounded with more normal nonclone trophoblast tissue could amend the subsequent fetal/neonatal losses often reported with bovine NT. In the our study, the objective was to replace inner cell mass (ICM) cells of bovine IVF-derived embryos with those of bovine NT embryos to reconstruct blastocysts comprised of ICM cells and trophoblast cells derived from bovine NT and IVP embryos, respectively. An effort was made to develop an applicable microsurgical embryo reconstruction procedure that would allow the presence of attached nonclone placental tissues to subsequently support the development of the bovine somatic NT fetus during gestation.

METHODS

Oocyte preparation
Bovine oocytes were obtained weekly from a commercial source (Ova Genix, San Angelo, TX). The majority of the oocytes provided by this commercial source were from mature Holstein females. The oocytes were shipped at 38°C by overnight courier to the laboratory, while undergoing in vitro maturation during transit. After 18–22 h of maturation, the oocytes were randomly assigned to standard in vitro fertilization (IVF) or NT procedures. All of the chemical agents and media were obtained from Sigma (St. Louis, MO), unless otherwise specified.

In vitro fertilization
IVF was performed as previously described (Murakami et al., 1998) using frozen semen from a single ejaculate of a fertile Holstein bull and Brackett-Oliphant (B-O) medium (Brackett and Oliphant, 1975). Briefly, one 0.25-mL straw of frozen semen was thawed in a 39°C water bath and washed twice in B-O medium supplemented with 5 mM caffeine by centrifugation at 500×g for 5 min at room temperature. The sperm pellet was re-suspended in B-O medium supplemented with 0.3% BSA, 3.6 IU heparin (Elkins-Sinn, Cherry Hill, NJ), and 2.5 mM caffeine. Then oocytes were placed into 100-μL insemination droplets under medical grade mineral oil with spermatozoa at a concentration of 1 × 10⁶ sperm/mL. After 5 h of co-incubation, oocytes were denuded of cumulus cells by vortexing in Tissue
Culture Medium 199 (TCM 199, Gibco, Grand Island, NY) containing 0.1% hyaluronidase, washed and cultured in CR1aa culture medium with 5% BSA (Rosenkrans et al., 1994) at 39°C in a humidified atmosphere of 5% CO₂, 5% O₂, and 90% N₂.

Nuclear transfer

After washing, only good quality mature oocytes that had extruded the first polar body were selected for NT using the basic procedure previously described by Shiga et al. (1999) with minor modifications (Murakami et al., 2003). Briefly, the oocytes were exposed to Hoechst 33342 stain (5 μg/mL) and transferred to a 200-μL droplet of Dulbecco’s phosphate-buffered saline (DPBS, Gibco) supplemented with 5% fetal bovine serum (FBS) and 5 μg/mL of cytochalasin B. A small rent was made in the zona pellucida and the first polar body and the metaphase plate were removed from each oocyte using a fine flexible glass needle, after a brief observation (≤10 sec) under fluorescence.

The donor cells, originally isolated from a mature, fertile Charolais cow (5 years of age) of high genetic merit, consisted of adult skin fibroblasts that had been subpassaged two to eight times. A single donor cell was introduced into the perivitelline space of the enucleated oocyte to construct a cytoplast-karyoplast couplet. The couplets were induced to fuse in buffer comprising 0.3 M mannitol, 0.05 mM calcium, 0.1 mM magnesium with two direct current pulses of 2.25 kV/cm for 15 μsec delivered by an electrofusion unit (BTX Model 200, San Diego, CA). The fused couplets were further activated by being cultured in 10 μg/mL of cyclohexamide for 4 h, washed and then cultured in CR1aa medium with 5% BSA at 39°C in a humidified atmosphere of 5% CO₂, 5% O₂, and 90% N₂ (day 0).

Embryo culture

On day 3 of in vitro culture, cleaved embryos from both IVP and NT procedures were transferred to fresh CR1aa medium supplemented with 5% BSA and cultured at 39°C in a humidified atmosphere of 5% CO₂, 5% O₂, and 90% N₂ for an additional 5 days. On the morning of day 8 of in vitro culture, good quality blastocysts were selected from both IVP and NT embryos for the embryo reconstitution procedures.

Embryo reconstruction

The micromanipulators were arranged with a beveled glass pipette (40 μm i.d.) on one side of the unit and a new microblade (A.B. Technology, Pullman, WA) attached on the other side. Hatching or hatched blastocysts from IVP-derived embryos, which served as the host tropheoblasts, were transferred to a 200-μL droplet of DPBS supplemented with 5% FBS and 5 μg/mL of cytochalasin B. The microblade was lowered vertically to hold the host IVP-derived embryo in position on the bottom of the droplet in a holding dish with the IVP-derived ICM isolated to one side of the microblade. Then, ICM from the bovine NT embryos was mechanically isolated removing the adjacent trophodermal cells and the overlying polar trophoderm using a modification of the micromanipulation procedure used in mice (Matta, 1991). The ICM were aspirated into a small-pore micropipet (Fig. 1A) and gently injected into the blastocoele of the host IVP embryo (Fig. 1B). This was followed by complete removal of the original ICM with the surrounding tropheblast cells from the host IVP embryo using a microblade embryo splitting technique (Fig. 1C), similar to the method for hatched blastocysts previously reported by this laboratory (Rorie et al., 1994). The result was an ICM and tropheblast reconstructed collapsed embryo and a discarded ICM with a surrounding trophoblast segment from the original host IVP embryo are shown in Figure 1D. Reconstructed embryos were cultured in vitro for 3–6 h post-fusion prior to transfer.

Control NT embryos were prepared using oocytes from the same source, the same embryo culture system and the same NT procedure. The control NT embryos were similarly cultured for up to 6 hours prior to their transfer to recipient females.

Embryo transfer

Mature, cyclic beef females (mixed breed, crossbred cows), in good body condition, from a single research station herd served as recipients following natural estrus (day of estrus = day 0). The reconstructed day-8 embryos with the introduced NT ICM cells (Fig. 2) and the control NT embryos were removed from in vitro culture, as re-expanded blastocysts, and nonsurgically transferred to recipients (two to four embryos/female) on day 7 or day 8 of their estrous cycles. Pregnancies were
detected using ultrasonography at day 30 of gestation, and verified by detecting fetal heart beats on day 60 and on day 90 of gestation. Thereafter, pregnant recipient females were re-evaluated monthly by rectal palpation throughout gestation.

RESULTS

A total of 65 viable reconstructed NT embryos were nonsurgically transferred to 20 recipient females on days 7–8 of their estrous cycle. Two of the 20 recipient females were diagnosed pregnant by ultrasonography, as evidenced by heart beats from singleton fetuses on day 30 of gestation. Of those pregnancies, one was lost between 60 and 90 days of gestation. The remaining mature crossbred recipient cow remained pregnant with a viable fetus at day 240 of gestation; however, this female died on day 252 of gestation while carrying a female fetus weighing 62.7 kg (Fig. 3).

Gross pathology of the internal organs of recipient female, the fetus and placental tissues suggested that the fetus died following the death of the recipient. Furthermore, the gross pathology report from the Louisiana State University School of Veterinary Medicine’s Department of Pathology indicated that hydroallantois in addition to the massive size of the placental tissues (Fig. 4) and the mega-size fetus were involved (renal dysfunction, hydronephrosis, internal organ damage) in terminating the life of the recipient female.

FIG. 1. The embryo reconstruction procedure developed for the introduction of inner cell mass (ICM) cells isolated from bovine nuclear transfer (NT) embryo (A) into the trophoblast of bovine in vitro fertilized (IVF) embryo (B). This was followed by the removal of ICM cells and surrounding cells from the day-8 host IVF-derived embryo (C). This resulted in NT ICM-IVF trophoblast reconstructed embryo (collapsed, center) and the ICM and attached trophoblast of the IVF-derived embryo segment (bottom) that was then discarded (D).
In the control group, a total of 61 NT-derived embryos were similarly nonsurgically transferred to 21 beef recipient cows (two to four embryos/female). Of these recipients, eight (38.1%) females were pregnant on day 30 of gestation, but half of the pregnancies were lost prior to day 90 of gestation. Overall, three (14.3%) females remained pregnant at day 240 of gestation and each produced a single calf by Caesarean section at 273–283 days of gestation. Each of these three pregnant recipient females remained healthy and viable during gestation up to and following the Caesarean section.

Biopsy samples were obtained from the skin of the dead recipient cow that carried the reconstructed NT fetus, the large fetus and from the fetal cotyledonary tissue. Multiple fetal and cotyledonary samples were harvested from subsurface tissue biopsies. These samples and the NT donor cells were evaluated by ImmGen, Inc. (College Station, TX) using microsatellite DNA analysis. Results of the analysis established that the genotype of the fetus was the same with that of the NT donor cow but different from that of the recipient cow (Table 1). Neither the fetus nor recipient cow had the same genotype as the fetal cotyledonary tissue.

DISCUSSION

The presence of noncloned trophoblastic tissue in bovine somatic cell NT conceptus has been proposed as a possible method to increase the chance of the fetal survival during pregnancy by producing a more normal placenta for the support of the developing NT fetus in sheep (De Sousa et al., 2001). NT embryo compensation with developmentally compromised tetraploid embryos has been suggested as another option for that pur-
pose (Nagy et al., 1990). However, NT tetraploid embryo production has been reported not to be very efficient in cattle (Curnow et al., 2000; Iwasaki et al., 2000). Microsurgical methods to exchange ICM cells and trophoblasts between blastocysts have been effectively demonstrated in mice (Papaioannou, 1982), and this approach was later used between mouse embryos that possessed different genotypes (Gardner et al., 1999). In addition, blastocysts comprised of sheep ICM and goat trophoblast were reconstructed using a similar approach to that reported herein, and live lambs were produced after transfer of the reconstructed embryos to a recipient caprine doe (Rorie et al., 1994).

In the present study, we reconstructed bovine blastocysts with ICM cells mechanically isolated from NT-derived embryos using the basic approach reported a number of years earlier for mouse embryos by Gardner and Johnson (1972), then modified by Matta (1991), and introduced into the collapsed blastocoele cavity of IVP embryos using a method slightly modified from that previously described in this laboratory for sheep and goat embryos (Rorie et al., 1994). The approach to ICM isolation in bovine NT embryos was chosen for use because the immunosurgery method had been previously reported to reduce the viability of the post-treatment ICM cells when compared with those carefully isolated by the micromanipulation procedure (Wells and Powell, 2000).

When good quality IVP and NT embryos were selected for the embryo reconstruction procedure, our success rate for trophoblast re-expansion and blastocyst formation was >90%. The transfer of these reconstructed embryos resulted in a viable near term somatic NT fetus with different genotypes between the fetus and cotyledonary tissue. This finding supports being able to produce a bovine somatic cell NT near term pregnancy with placental tissues derived from IVP-derived embryos. Unfortunately, in this study the recipient pregnancy rate of 10% from transferring these IVF-NT-derived reconstructed embryos was lower than expected, and the one recipient female carrying the embryo reconstructed fetus to day 252 of pregnancy died before delivery.

Correspondingly, 61 bovine control NT embryos were similarly cultured in vitro and transferred to 21 recipients, resulting in a 38.1% pregnancy rate for these females on day 30 of gestation; however, half of the pregnancies were lost prior to day 90 of gestation. Overall, only 14.3% of the recipient females remained pregnant on day 240 of gestation, and each of these delivered a single normal-size calf by Caesarean section at 273–283 days of gestation. Consequently, only one of these heifer calves survived the perinatal period after intense veterinary care, including oxygen therapy to assist in respiratory distress and follow up antibiotic treatment.

It is widely acknowledged that nuclear transfer in cattle results in increased rate of conceptus loss throughout pregnancy, exhibit abnormal placental tissues, often have larger than normal birth weights
Table 1. Microsatellite DNA Analysis of the Cell Donor, Fetal Tissue, Cotyledary Tissues and Recipient Cow Tissues

<table>
<thead>
<tr>
<th>Cell type</th>
<th>ETH 1</th>
<th>ETH 225</th>
<th>ETH 3</th>
<th>BM 2113</th>
<th>BM 1824</th>
<th>SPS 115</th>
<th>TGLA 122</th>
<th>TGLA 227</th>
<th>TGLA 126</th>
<th>INRA 023</th>
<th>MGTG 4B</th>
<th>SPS 113</th>
<th>TGLA 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Donor cells</td>
<td>217</td>
<td>219</td>
<td>150</td>
<td>252</td>
<td>140</td>
<td>133</td>
<td>ND</td>
<td>ND</td>
<td>133</td>
<td>154</td>
<td>170</td>
<td>81</td>
<td>85</td>
</tr>
<tr>
<td>Fetus</td>
<td>217</td>
<td>219</td>
<td>150</td>
<td>252</td>
<td>140</td>
<td>133</td>
<td>ND</td>
<td>ND</td>
<td>133</td>
<td>154</td>
<td>170</td>
<td>81</td>
<td>85</td>
</tr>
<tr>
<td>Cotyledon</td>
<td>217</td>
<td>217</td>
<td>ND</td>
<td>ND</td>
<td>117</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>117</td>
<td>125</td>
<td>162</td>
<td>81</td>
<td>85</td>
</tr>
<tr>
<td>Recipient</td>
<td>213</td>
<td>217</td>
<td>150</td>
<td>117</td>
<td>121</td>
<td>131</td>
<td>139</td>
<td>178</td>
<td>178</td>
<td>162</td>
<td>172</td>
<td>83</td>
<td>87</td>
</tr>
</tbody>
</table>

*ImmuGen, Inc. (College Station, TX).
and increased perinatal deaths. These effects appear more extreme with somatic cell nuclear transfer, and may relate to a deficiency or a combination of deficiencies either in the nuclear transfer process itself or in the in vitro culture systems used prior to embryo transfer (Wells et al., 1999). It should be noted that the three NT control calves produced in this study originated from the same donor cell line and were cultured under the same in vitro culture conditions; and these calves, although weak and stressed at the time of Caesarean section, did not have mega-size placental tissues and had normal birth weights. Previous studies have suggested that various aberrations, including abnormal expression of developmentally important genes and global methylation losses in mice and bovine somatic cell NT fetuses, as well as, dysfunctional extra-embryonic membranes to be involved in the low overall success NT rates (Daniels et al., 2000; Kang et al., 2001; Wrenzycki et al., 2001; Humpherys et al., 2001, 2002).

Since there was an IVF-derived mega-size placenta attached to the 252-day NT bovine fetus at necropsy in the present study, one can not rule out that abnormal placentation was the cause of the problems related to NT calf size, morbidity and mortality that is presently associated with bovine somatic cell nuclear transfer. Obviously, further replications with improved skills, including the use of in vivo–derived embryos as host trophoblasts for embryo reconstruction, are needed to substantiate the unexpected effects of this approach for the production of bovine somatic cell NT pregnancies in the future.
TRANSFER OF INNER CELL MASS CELLS FROM BOVINE NT EMBRYOS

Address reprint requests to:
Dr. Robert A. Godke
Department of Animal Sciences
J.B. Francioni Hall
Louisiana State University
Baton Rouge, LA 70803

E-mail: rgodke@agcenter.lsu.edu